Version 1.07 (December 9, 2010): to be submitted

Sequential File Processing: A Fast Path from Native Code to .NET
with Visits to Parallelism and Memory Mapped Files
by Johnson M. Hart

Introduction
File processing remains a fundamental computing task, and this article concentrates on fast sequential processing on Windows platforms, with side notes about Linux and UNIX. This concentration is driven by several factors:

· Sequential file processing is important for pattern searching, compression, encryption, hashing, de-duplication, and countless other tasks, and performance is always important.

· Straight-forward programming solutions can be an order of magnitude (or more) slower than more complex solutions exploiting parallelism and large memory mapped files.
· Some solution strategies require careful parameter tuning to get good performance (and avoid horrible performance), whereas other strategies do not depend on parameters such as buffer size.
· Today's multi-core systems with 64-bit address spaces and large memories allow additional performance enhancement opportunities through data parallelism. Windows offers several parallel programming options (threads, thread pools, .NET parallel programming patterns, and more); the distinctions and benefits can be confusing.
· Memory mapped files frequently provide performance advantages over conventional file streams, and memory mapping can be combined with parallelism. .NET 4.0's MemoryMappedFile class might be beneficial.
Random file access is also important, but sequential processing performance is sufficiently challenging for one short article.
Working with a simple sequential file processing pattern, I'll find a fast implementation and show significant performance improvements compared to simple, and widely used, methods. I'll discuss the underlying assumptions behind the performance results and also describe the programming challenges and risks.

Methodology
The goal is to achieve the best possible sequential file processing performance with a simple benchmark application. The principal steps will be:

· Describe the sequential file processing pattern, benchmark application, assumptions, and test environment.
· Show baseline performance for a simple native code implementation and some variations, and compare the performance with popular Windows and Cygwin utilities.
· Incrementally improve the performance using .NET, parallelism with threads and thread pools, and memory mapped files.
· Tune the faster implementations by adjusting buffer size and thread count. Machine specific details are used only when essential, and knowledge of Windows internals is not used. The best implementations are fast compared to the baseline implementations, but some are sensitive to the tuning parameters.
· Validate the results on other platforms, relax assumptions, and use different file sizes.
· Perform final code optimization and tuning on the best solutions.

· Discuss applicability to other sequential file processing patterns.

As appropriate, I'll discuss programming, reliability, and performance challenges and risks, as well as the limitations of the programming methods. Additionally, I'll comment on the applicability of .NET's asynchronous programming model (APM) and the new .NET 4.0 MemoryMappedFile class.
The article includes performance graphs and tables as appropriate. Complete code, along with test data, is available on my Web site in a zip file.
Benchmark Application and Performance Test Environment
The benchmark application runs from the command line and reads an input file sequentially, transforms the file, and writes the transformed results to an output file. File copying would be the simplest example, but I'll use a straight-forward transformation, namely a simplified "Caeser Cipher" (CCI) encryption:
· Each individual 1-byte character is read from the input file.

· A constant "shift" value (between 0 and 255) is added to the character

· The resulting character is written to the output file

The implementation used here is not the usual CCI as the letters are not treated separately from the digits or other special characters. The shift value is simply added to the input value. Thus, if the shift is 10, 'Z' would be encoded as 'd', and 'z' would be encoded as a non-ASCII character. Line control characters are not preserved, so an encrypted text file might not be a valid text file. Negative shifts are permitted, however, so a shift of -10 will decrypt the file encrypted with shift of +10. This simplification is not relevant to this paper's goals; all that is needed is a basic instantiation of the "sequential file transformation" pattern. There are many other possible instantiations of the pattern, such as compression, archiving (which combines multiple input files into a single output file), and more sophisticated encryption.
Note: An earlier version of this article used timings from code that specifically computed the shift sum modulo 256 (% 256), which is not necessary as the arithmetic is performed on 8-bit data. The new timings are considerably faster, often by a factor of 2. However, the conclusions are not changed, and in many realistic situations, the data transformation will be more time consuming than in this benchmark.
Test System

The test system runs Windows 7 and has 4 64-bit CPUs (AMD Phenom(tm) 9750 Quad-Core Processor, 2.40 GHz) with 8 GB RAM, and over 600 GB disk space with 512-byte sectors and 8 sectors per cluster on a SATA 7,200 rpm disk. Some of these details will be helpful for performance tuning.
This system is a typical low-cost (about $600) personal system. Much larger systems, especially ones with more CPUs and faster storage, are becoming available at moderate cost and are in wide-spread use. Nonetheless, the test system has enough power to demonstrate the different implementation strategies. On the other hand, many existing laptops are still 32-bit systems and often only have two, or even one, processor, and I'll test a smaller system later. At the current time, however, 64-bit laptops are ubiquitous, and 32-bit systems can be regarded as legacy systems.
Note: The test system does not support hyper-threading (HT), which is supported by many Intel CPUs. In a future article, I'll look at the HT impact on file processing parallelism performance in another context.
Test Data

The initial test file (the file to be encrypted) is a 640 MB file, called big.txt, which was generated by the randfile program available as part of the Examples file downloadable from the author's Windows System Programming - Edition 4 (WSP4) support page. This file size was selected for several reasons:
· The size is sufficiently large to consume measurable, but not excessive, time.

· A large file can stress a system with less memory or a 32-bit CPU, revealing scalability issues.
· The size (640,000,000 bytes) is not a power of two ("MB" usually implies a power of 2^20), which is important for thorough testing of some implementations.

· Many applications, including emerging cloud applications, must process large data sets (actually, big.txt is small by such standards), as described, for example, by Gannon and Reed (Parallelism and the Cloud - see the references).
Test Assumptions
The initial testing makes several simplifying assumptions, and these assumptions generally improve performance. Later tests will relax the assumptions to be sure that the best implementations are still the best under more general conditions.

· The input file may have been used recently, meaning that large parts of the file may already be in memory and do not need to be read from the disk.

· The output file may already exist on the disk, although it will be changed. This means that disk space does not need to be allocated, saving time.
· The elapsed time, used in the performance measurements, is the program execution time. There is no assurance that the output file has been written through to the disk.

· The test systems are idle, except for the test program.

· The input and output files are on the same disks, the disk utilization is less than 50%, and the disks are not highly fragmented.

Nonetheless, all implementations benefit from the same assumptions, and the assumptions will be relaxed later.

Baseline, Native Code, Results

The native code mentioned here is available as a free download from the author's Windows System Programming - Edition 4 (WSP4) support page. The download includes executables and Visual Studio projects for a family of native cci (Caesar Cipher) implementations.
All test programs used here are 64-bit builds.
The first solution attempt is the simplest and most obvious; C code, using the Windows (a.k.a. Win32) API functions CreateFile, ReadFile, WriteFile, and CloseHandle. A simple loop reads a block into a buffer (the block/buffer size is adjustable), encrypts the buffer, writes the buffer, and proceeds to the next block. Table 1 shows the time (all times are in seconds) as an average of 5 test runs for each buffer size from 512 to 65536. Note: It is essential to compile with full optimization to get these timing results; performance can be slower by a factor of two or more without full optimization. A previous draft version of this article erroneously used results from non-optimized code.
	512
	1024
	2048
	4096
	8192
	16384
	32768
	65536

	20.56
	13.03
	8.22
	5.14
	3.56
	2.58
	2.38
	2.02

Table 1. cci, Native C code performance as a function of block size. File Size is 640,000,000 bytes.
Comments on Table 1
· Tuning is important as block size significantly affects performance.

· Buffers larger than 65,536 do not significantly improve performance, and sizes less than 512 (the sector size), such as 256, produce very bad performance (nearly 40 seconds), but using at least a whole cluster (8 sectors, or 4K), or "allocation unit", is best.
· Block sizes should be a power of two; other values produce very bad performance.

· The results are essentially the same if you use the Standard C Library (CLib) fopen, fread, fwrite, fclose functions. Tests on comparable Linux and UNIX systems produce similar results.

Timings with Comparable cmd and Cygwin Commands
How does this performance compare with other simple file processing commands, such as the Windows cmd commands and the Cygwin open source UNIX/Linux commands? Some sample results show that the native code cci performance is comparable, and sometimes superior, to that of similar programs.
· The windows comp and fc file compare commands, which read two files (there is no writing), require about 15 seconds.

· The file copy commands require about 2 seconds; this is also the case with the WSP4 native code file copy implementation, cpCF. File copy does not need to process the data, so copy performance is better than encryption performance.

· The Windows cipher command requires about 20 seconds, but the computation is more complex than that used by cci.

· The Cygwin tar archiving command, archiving a single 640 MB file requires about 5 seconds.

Other Native Code Strategies

There are two tempting alternatives, with variations, for improving performance; the implementations are also in the WSP4 Examples file.
· Use memory mapped files (WSP4, Chapter 5), so that read and write operations are not necessary. After the input and output files are mapped, a pointer scans through the mapped input region, encrypts the character, and moves the character to the mapped output region. This eliminates system calls. cciMM implements this technique.
· Exploit parallelism (several references discuss different aspects of this topic) so that the CPUs can concurrently process different file segments, or "stripes". Windows provides several solution techniques:

· Use multiple threads, possibly in a thread pool. cciMT (independent threads) and cciMT_VTP (independent work items in a thread pool) implement these techniques. See WSP4 (Chapters 7, 10) and Duffy (Chapter 7). Each thread has a separate pair of input and output file handles maintaining different file pointers and state.
· Use Windows asynchronous I/O (WSP4, Chapter 14), either "overlapped I/O" (synchronize with a Windows event) or "extended I/O" (synchronize with callback functions). cciOV and cciEX implement these two techniques. There is only one pair of file handles, as asynchronous I/O conveys file position through "overlapped" structures.
Parallelism and Striping
The parallelism implementations divide the input and output files into equal sized "stripes" (except for the last stripe). If there are four threads or work items, the first thread processes stripes 0, 4, 8, etc., the second thread processes stripes 1, 5, 9, etc., and so on. The terms "stripe size", "block size", and "buffer size" are used interchangeably in the discussion.
There is a final variation, cciMTMM, which uses multiple threads to process stripes in memory mapped files.

There are two tuning parameters: the number of stripes and the stripe size.

Parallelism and Memory Mapped Files Results

Figure 1 shows the results for these different implementations for different block (or stripe) sizes; the figure includes the Table 1 cci results for comparison. The results for the striping implementations were obtained with 4 stripes (also the number of CPUs), which was always better (sometimes substantially better) than other values, such as 2, 8, and 16.

[image: image1.png]Time (s)

Native Code, 640MB, 4 CPU, 64-bit Build

30.00

25.00 +

20.00 +

15.00

10.00

\

\

A

5.00

.—.\.

0.00

512 1024 2048 4096 8192 16384 32768 65536

Buffer Size

——cci

= cciov

= cciEX
—<=cciMT
—f=cciMM
=0—cciMTMM

Figure 1. Native C Performance as a Function of Block Size. Multiple Implementations.
Native Code Comments and Summary
· The simplest implementation, cci, produces good, but not optimal, results (the best performance is about half the cciMTMM performance). However, it must be tuned; poor tuning can degrade performance.
· cciMM is is single-threaded and totally independent of stripe size as the entire file is mapped and processed. The performance is only half that of the best cci results.
· The two asynchronous I/O solutions, cciOV and cciEX, are sensitive to stripe size and cciOV is inferior to the simplest solution. I also found them difficult to program. cciOV performance is unpredictable as the stripe size is increased. These results are repeatable on the test system, but behavior may be very different on other systems. Note: This is not a blanket statement about Windows asynchronous I/O; it's merely a statement about its use in the benchmark.
· cciMT (read/write I/O with multiple threads) is not competitive with cci for larger block sizes. The cciMT_VTP (using thread pooling) produced slightly inferior results, which are omitted from Figure 1.
· cciMT, cciOV, and cciEX are sensitive to the number of stripes; 4 stripes were used in all cases. 2 stripes work well with cciOV and cciEX, but produce bad results with cciMT. 8 and 16 stripes work well with cciEX but not with the other two programs.

· cciMTMM performance is the best for all stripe sizes.

· UNIX and Linux results are comparable, using Pthreads (see Butenhof) for threading.

Both parallelism and memory management give good results, but Windows file processing is sufficiently efficient that a well-tuned simple implementation (cci with large stripe size) will give good results (half the performance of the best case) that may be acceptable in some cases.

.NET, C#, and Managed Code

The .NET framework is an attractive development platform for many reasons. Features include:
· C#, a modern, OO language, frequently used for new Windows development projects.
· Extensive parallelism support (see Duffy and Toub), including an "asynchronous programming model" and enhanced parallel programming patterns in .NET 4.0.
· Memory Mapped file support in .NET 4.0

· The ability to use the so-called "InteropServices" to mix managed code with Windows code when appropriate

On the surface, there is no a priori reason to expect that .NET implementations will be better than, the same as, or worse than the comparable native implementation. However, since optimal performance is the goal, I'll proceed to show the results. It will turn out that the results are similar to the native code results. C# and .NET provide a superior development environment without significant performance degradation.
.NET Results

Note: The C# code and projects are downloadable as a .zip file. See the ReadMe.txt file for more information.
Figure 2 shows the .NET results with different solution strategies, which I'll describe in following sections.

[image: image2.png]Time (s)

18.00
16.00
14.00
12.00
10.00
8.00
6.00
4.00
2.00
0.00

.NET, 640MB, 4 CPU, 64-bit Build

4\

\

512

1024 2048 4096 8192 16384 32768 16384

Buffer Size

——cci

= cciMT
=de=CCiTP
—=cciMM
—t=cciMMMT
=®=cciMMTP

Figure 2. .NET C# Performance as a Function of Buffer Size. Multiple Implementations
· cci (the dark blue line) is comparable to Figure 1's cci, and uses the FileStream class Read and Write methods. It is not as sensitive to buffer (stripe) as the native implementation. More importantly, the elapsed time is about 3 seconds, much is more than the best native time of 2.02 seconds.

· cciMT (multiple threads, comparable to the native implementation of the same name) and cciTP (the work items are in a thread pool) produce competitive results with 4 threads with buffwe size 16384. The best times are about 1.7 seconds. Notice, however, that the solutions are not stable as the buffer (stripe) size increases.
· cciMM, which uses memory mapped files, does not give good results with a single thread.

· The two multithreaded memory mapped solutions (cciMMMT and cciMMTP), however, give excellent (and nearly identical) results (about 1.2 seconds) and are stable with respect to stripe size. Thread pooling provides no advantage for the benchmark application, and additional tests in Figures 3 and 4 confirm this.
The programming effort to use memory mapped files as well as multiple threads and thread pools, is worth the effort; I'll comment later on the effort and risks.
.NET Asynchronous I/O

I did not develop implementations corresponding to the native code cciOV and cciEX for the following reasons:

· The native code results were not encouraging.

· The code was complex and difficult to implement.

· The .NET Asynchronous Programming Model (APM; see Duffy, Chapter 8) supports BeginRead and EndRead (and comparable write functions), but there is no equivalent to the overlapped structure to specify file position. There would need to be a separate pair of FileStream objects for each stripe. This is not really a barrier but is a complicating factor.
· The other implementations gave results that appear to be about as good as can be expected. I'll leave it as an open issue to determine if the effort would have been worthwhile.
.NET 4.0 MemoryMappedFile Class

I was hoping to have the opportunity to use the new MemoryMappedFile (MMF) class in .NET 4.0, and I tried it using the Visual Studio 2010. The results were not favorable (25 seconds was the best I could get; the code is included with the source code) because, while the MMF class allows you to create maps and map accessors, the accessors move data between the map and a buffer, where the encryption takes place. There is not a direct pointer to the map; this is a consequence of managed code.
The MMF file class would certainly be useful in any number of situations, including random file access. It was not useful for this programming pattern, however.

Memory Mapped Files with an unsafe Class

The three memory mapped solutions use "unsafe" code that interoperates with the Windows API (CreateFile, CreateFileMapping, MapViewOfFile, etc.). This solution was complex, and many would argue that it is undesirable, especially since you can use thread pools, the FileStream class, and careful tuning (see cciTP) to get results that are only marginally slower. However, the unsafe code is in a separate assembly, and the mapped file can be accessed as an array.
Results on a Smaller System
I tested 32-bit builds of the same programs on a typical legacy personal system - a Windows Vista 2-CPU (2.0 GHz) laptop with 2 GB RAM and 160 GB SATA 5,400 rpm disk. Initial results for a 640 MB file were:
· The cci (FileStream, no threading) time was 86s (compared to 4s on the first test system). The file size is the problem; processing 320 MB and 160 MB files required 19s and 1s, respectively.
· The performance of the other implementations was even worse, regardless of buffer size or threading technique.
Large file conversion does not perform well on a small system; the inability to cache entire files in memory is a significant problem. Also, the limited 32-bit address space can make it impossible to map large files (the 640 MB files mapped successfully, but larger files did not). Finally, the two CPUs limit the parallelism impact. Note: It is possible to create map views one block at a time; I did not attempt to do this.
Figure 3 shows processing time as a function of file size (up to 1,280 MB) using the .NET implementations. Figure 4 shows the same results for the same tests on the 4-CPU, 64-bit system. All tests were run with near-optimal block size (generally 16,384) and thread/stripe count (generally, the processor count). Figure 4's 640 MB file results are not the same as in Figure 2 as the data is from a separate test run, and there can be some variation. The raw data is included in spreadsheets with the code, and the spreadsheets compute the standard deviation as well as the average. Be aware, however, that the sample size is small for each configuration. Some configurations, such as cciMTTP on the 2-CPU system, give very inconsistent results, whereas others are fairly consistent.
[image: image3.png]Time (s)

128.00
64.00
32.00
16.00

8.00
4.00
2.00

1.00

.NET, 2 CPU, 32-bit Build

/

/

——cci
—l—cciMT
—h—cciTP

[s

cciMM
cCiMMMT

yA—

20 640

1280

File Size (MB)

=0—cciMMTP

Figure 3. .NET C# Performance as a Function of File Size. 2 CPU, 32-Bit

[image: image4.png]Time (s)

8.00
7.00
6.00
5.00
4.00
3.00
2.00
1.00
0.00

.NET, 640MB, 4 CPU, 64-bit Build

/

/4

y/4

160

File Size (MB)

——cci

= cciMT
=de=CCiTP
—<=cciMM
—f=cciMMMT
=®=cciMMTP

Figure 4. .NET C# Performance as a Function of File Size. 4-CPU, 64-Bit

 Figures 3 and 4 Comments
· Figure 3 uses a log (base 2) time axis as large files (640 MB and above) did not perform well on the small system.

· The two FileStream threaded solutions (cciMT, cciTP) required essentially the same time in all cases, as did the two memory mapped threaded solutions (cciMMMT, cciMMTP), and they are barely distinguishable in Figure 4.
· There are no small system memory mapped results for the 1280 MB file; the programs failed to map the input and output file due to insufficient address space. However, the threaded memory mapped solutions (cciMMMT and cciMMTP) gave the best results for the smaller files.

· The threaded memory mapped solutions (cciMMMT and cciMMTP) scale well on the larger (64-bit) system, where the 1,280 MB file can be mapped successfully. The FileStream threaded solutions (cciMT, cciTP) did not scale well for the 1,280 MB file.
· Memory mapped files without threading do not provide performance benefits.
Changing the Assumptions
The "Test Assumptions" section described factors that enhance performance. These assumptions are plausible assuming that the processed files are "in play", having been recently created or used for other purposes or generated as data during a previous program step. Furthermore, all the implementations were tested using the same assumptions, which minimize I/O.
However, if the input file is being used for the first time, the results may not be as good. Also, the fact that the output file already exists, even though it will be modified, can save time. since Windows does not need to allocate disk space.
Here are the results of some simple experiments to estimate the negative impact of using the selected implementations under less favorable circumstances.

· Use a new output file.
· 4-CPU, 64-bit, 1,280 MB file. No impact on cci and cciMMMT
· 2-CPU, 32-bit, 320 MB file. Also, No impact on cci and cciMMMT
· Use a fresh input file. I shut down the systems.
· There was minimal impact on cci, which does not appear to benefit if the input file has been used recently. This was the case on both test systems.

· cciMMMT was definitely slower on both cases with all file sizes. The times were comparable to the cci times. Hence, memory mapping and threading are only effective on input files there have been used recently, but there is no penalty in the worst case.

A Different Sequential File Processing Pattern
The sequential file transformation pattern (SFT) used in these examples is a good candidate for the parallelism implementations using threads and thread pools because each character is treated independently, and there is no internal state. Therefore, the input file can be partitioned (or striped) in any way that is convenient for thread processing. Furthermore, the solution is "lock free" as there is no synchronization between the different threads, other than waiting for the threads to complete.
Toub (page 4) refers to such problems as "Embarrassingly Parallel" or "Delightfully Parallel", and he describes and compares several parallel programming patterns. These patterns, some of which I've used, are, of course, lower level patterns applied to implement the SFT pattern.

However, many file processing applications do not lend themselves to striping. For instance, the UNIX/Linux wc utility counts lines, words, and characters in a file, and implementations use internal program state to locate word and line separators. With some ingenuity, you can overcome this difficulty, but then consider the grep "generalized regular expression" pattern search utility, where it is much more difficult to partition the input file. However, you can use the "whole file processing" pattern (WFPP) described next.
Whole File Processing

wc and grep are instances of commands of the form:
command [options] file1 file2 ... filen

This is simple to parallelize (it is "delightfully parallel"); just use a separate thread to process each file. Some care is required to combine the output results (simple information, not large files in most cases) in the correct order (the solution is out-of-scope for this paper). There is also an issue of balance; if the files are all approximately the same length, then each thread has the same amount of work to perform. If the file lengths differ significantly, then care is necessary to assure that other thread-file combinations are available. Toub addresses issues of this nature, but not in the context of file processing.
WSP4 implements a native wcMTMM command that performs well compared to the alternatives, including the Cygwin implementation. The actual processing function (word counting in this case) can be written to do nearly anything, such as searching, without affecting the calling program. A .NET implementation would be easy to write.
The Roads Not Taken

I'll list a few other solutions and tests that I have not evaluated entirely. Same readers might wish to explore some of these roads, and I'd be very interested in hearing about your results.
Parallelism Frameworks

Parallelism is a "hot topic" (see some of the references) and there are a number of "parallelism frameworks" that greatly simplify the multithreaded programs I wrote. Here are several; a Web search will turn up extensive information.
With one exception, I have not implemented any of the file processing patterns with a parallelism framework.
· OpenMP is an open source and multi platform system consisting of compiler directives and libraries to support parallel programming. The supported languages are C/C++ and Fortran.
· Thread Building Blocks (TBB) is developed and supported by Intel and is a C++ template library. TBB is available on Windows, Linux, Mac OS X, and UNIX.
· Microsoft's Task Parallel Library (TPL) requires .NET 4.0.

· Java is somewhat comparable to C#, but I did not attempt any Java implementations.

Many papers and books, including the references, cite both the importance and difficulty of parallelizing existing code and even new code. The difficulties are real and not to be taken lightly, but sequential file processing is both important and relatively simple to parallelize (but see comments in a later section). Cormen et al, Chapter 27, give a rigorous treatment of parallelism in general and describe sophisticated techniques to parallelize several tasks; these techniques are not required for my file processing patterns.
Explore and Exploit Internals and Systems Knowledge

I did not attempt to exploit system architecture (hardware and software) beyond being aware of the processor count and disk sector size. Nor did I attempt to exploit knowledge of Windows and .NET internals. The approach was to use public interfaces as described in the Microsoft documentation.
Here are a few topics that could be worth investigating:

· The 32-bit executables are marginally smaller than the 64-bit executables. Does this improve 32-bit performance by allowing more instructions in the instruction cache or reducing the working set size?

· What is the impact of .NET's memory and other resource requirements?
· What are the internal native and .NET block sizes and how do they impact performance?
· What is the impact of processors with hyper-threading?

Other File Types, Storage Architectures and Systems
Test results using any of the following would be interesting:

· Really large files: My largest test file was 1.28 GB, but the limits of the multithreaded memory mapped (cciMMMT) solution would be interesting to know. The amount of physical memory will undoubtedly affect the result. I have successfully mapped files as large as 64 GB in other applications.
· Networked files: Results for files on a variety of servers and network connections (100 MB, 1 GB, or faster) would be valuable..

· Storage arrays, especially striped arrays: The multithreaded implementations might perform well with a carefully-selected stripe size as there would be parallel data paths to the storage stripes.

· Different or more CPUs, different cache architectures, more memory, etc.: Furthermore, testing on a wide selection of systems is essential when testing multithreaded code. Single CPU testing would also be interesting but of diminishing importance.

· Windows XP, Windows Server 2003, other CLR versions: The two Windows versions use the Windows NT 5.x kernel, whereas Windows 7 and Windows Vista use the newer NT 6.x kernel. The .NET tests use CLR version 3.5. See the Bruestle reference for data which shows quite different results on XP and S2003, using CLR Version 2.0: the results are more favorable to native 32-bit code.

Algorithm Variations

There are numerous algorithm variations that would be interesting to explore. Examples include:

· Perform a whole file copy and encrypt a single file in place. The Windows CopyFile function is very fast (see WSP4's cpW program). Several quick tests did not, however, produce good results but more investigation could be worthwhile.
· Map large files one block, or view, at a time rather than mapping the entire file.

· Perform manual code optimization, such as "unwinding" the tight loops so that, for example, each loop body converts 4 or 8 bytes. The downloadable code runs such optimized code, based on a command line option, and Bruestle has explored this approach. The results look promising. Such optimization could be regarded as part of the final tuning and optimization mentioned in the "Methodology" section.
· Implement transformations that are more CPU-intensive than the simple Caesar Cipher. A first step would be to treat digits, upper case, lower case, and punctuation characters separately, so that, for example, 'Z' wraps to 'A', '9' wraps to '0', and so on. More CPU activity could be expected to favor the multithreaded implementations.
Additional .NET 4.0 Features

Toub describes numerous .NET 4.0 features and parallel programming patterns. I have not explored all of them but do plan to do so in the future, perhaps writing a second part to this paper.
Open Source Code

I did not examine open source implementations to see how they implement file processing. However, initial tests show that a multithreaded memory mapped implementation can be much faster than existing implementations, such as Cygwin's wc. Such implementations might make a worthwhile open source contributions by anyone able to undertake the effort.
Implementation Pitfalls and Cautions
The single threaded file stream implementation (cci) is by far the simplest to program, and many will find its performance acceptable. The multithreaded memory mapped solutions are faster, but not that much faster working with fresh files. This leads to some cautionary comments:
· The multithreaded memory mapped solutions were not easy to write and debug. The initial implementations had race conditions and logic problems, as well as resource management issues. I've documented the code segments that were difficult to get right.
· In theory, an experienced programmer would not make such mistakes. Nonetheless, most programmers will make some.
· While I tested the solutions extensively and have examined the code, I've braced myself for the possibility that readers will find errors in the code.

· Complexity is the enemy of reliability.
· Tuning is important, although the multithreaded memory mapped solutions are fairly insensitive to block size and thread count.

· Performance behavior can vary widely from one system to another, sometimes without any obvious explanation.

· Program operation can saturate some system resources, such as memory or the CPUs.

In summary, if I needed to develop a solution quickly and reliability were essential, I'd use the slower single threaded file stream implementation (cci). On the other hand, if top performance should be an essential requirement, then I would invest the time to assure that the threading and memory mapping were absolutely correct. As I mentioned, I think they are correct, but I would not ship a mission critical application without a more extensive quality assurance.

Summary

This paper has demonstrated several factors that are important for sequential file processing.

· Many sequential file processing problems are instances of simple patters that are amenable to parallelism.
· There are good parallel programming patterns that are effective when implementing solutions to the SFP problems.

· Memory mapped files and threading are not sufficient by themselves for significant performance enhancement.

· The combination of MMFs and threading yield very good performance in some circumstances and are as good as file stream performance in all tested circumstances.
· Large physical memories are essential for top performance, especially with large files.

· .NET 4.0 memory mapped files were not useful; mixed managed and native code is necessary.

· The .NET asynchronous programming model was not useful for the applications used in this paper. The APM may be very useful in other situations.

· Minor adjustments to tuning parameters can have significant performance consequences, as shown in Figure 2 (cciMT) and Figure 1 (cciOV).
· There are numerous ways to implement this very simple programming task, and I have not exhausted the possibilities.
Running the Test Program
You can download the .NET source code and Visual Studio projects. The download zip file includes a ReadMe.txt file and an Excel 2007 spreadsheet with the raw data used for the figures.

The different implementations are all part of a single cci implementation. Command line options (default values are underlined) control the file access method ("FileStream" or "MemoryMapped"), the threading method ("None", "MultiThreaded", or "ThreadPool", with an optional "Fast" suffix in all three cases), buffer size (4096), and thread count (CPU count). The "Fast" suffix on the threading method enables optimized code. The prototype optimized code uses loop unwinding in the tight inner encryption loop, but this code is intended as a test bed to evaluate other optimization techniques.

The output shows selected options and the elapsed time, in seconds. The output also shows all parameters, such as stripe count, even if they are not relevant to the configuration.
Figure 5 shows some sample executions. The original file is encrypted twice with two different methods and then decrypted. The three shift values, in order, are 2, 3, and -5. The decryption is confirmed using FC (a Windows utility), providing a partial correctness test (I performed more extensive testing). Incidentally, FC requires about 9 seconds, which is much slower than any of the cci operations.
The tests use WSP4's timep utility, which is similar to UNIX's time utility and displays the elapsed real time, user time, and system time. The last two values are summed over all 4 CPUs and may exceed the real time. Notice the real time slightly exceeds the internal measured file conversion time, which does not include initialization.
[image: image5.png]\Users hartN\cciN\bin\x64\Release>t imep cci
Encode file big. txt with a shift of 2 to file bis
Reof 1L ccaal tathmione 2t Fl105 e Zetm. Fine BARZ2STES techniaue is: None.
bufferSize: 16384, numberStripes: 4.

cci Brosram compléte. Elopsed fime: 3.336 seconds. Encrypted 640000000 bytes.
EileStream, None, 16384, 4, 3.336, 640000000

Real Time: 0:00i@3:417

USer Time: 00:00:01: 138

Sye Time: 00:00:02: 168

c:\Users\fhart\cci\bin\x64\Release>timep cci 3 big2. txt bigS.txt FileStream MultiThreaded 16384
Encode file big2.txt with a shift of 3 to file big5.t

The file access technique is: FxleStream. The threadlns technique is: MultiThreaded.
bufferSize: 16384, numberStripes:

cci Program complete. Elapsed time: 9 _seconds. Encrypted 640000000 bytes.

FileStream, Multhhreaded 16384, 4, 2 259 640000000

Real Time: @0:00:02:374

User Time: @0:00:00:982

Sys Time: ©0:00:02:808

\Users\fhart\ccx\bxn\x64\Release>t1mep cci -5 big5. txt big@d.txt MemoryMapped MultiThreaded 16384
Ercode 7ile bigS.txt with a shift of -5 to file bigd.t

The file access technique is: MemoryMapped The thread1n9 technique is: MultiThreaded.

bufferSize: 16384, numberStripes:

cci Program complete. Elapsed time: 1.762_seconds. Encrypted 640000000 bytes.

MemoryMapped galainggaded 16384, 4, 1 762, 640000000

E txt

184
Sys Time: BB BB 01 466

c:\Users\jhart\cci\bin\x64\Release>fc big.txt bigl.txt
Comparing files big.txt and BIG@.TXT
FC: no differences encountered

Figure 5. Running the .NET Test Program

Running Prototype Optimized Code

Figure 6 shows the same test sequence using the "Fast" suffix on the threading method. The prototype optimized code uses loop unwinding for the tight inner encryption loop. It is easy to modify this code to evaluate other optimization methods. Figure 6 shows that there are some small performance gains.
[image: image6.png]:\Us x64\Releasedtimep cci txt
Ercode 110 i Ent with s Shift of 2'5o File biadtx
Thefile acoes? tchniave is! FileStrean. The ShRZaENNS techniaue 1s: NoneFast.
bufferSize: 16384, numberStripes :
cci ' Prosram compléte. Elapsed €ime: 1 seconds. Encrypted 640000000 bytes.
S leSrnatam Gometste: TAER3° st 55T TBh0B55000
Real Time: 0D:00: 03: 402
USer Time: 00:00:00: 733
Sys Time: 00:00:02: 585

c:\Users\jhart\cci\bin\x64\Release>timep cci 3 big2. txt bigS.txt FileStream MultiThreadedFast 16384
Ercode 7ile big2.txt with a shift of 3 to file big5.t
The file access technique is: FileStream. The threadlns technique is: MultiThreadedFast.

bufferSize: 16384, numberStripes:
cci Program complete. Elapsed t 1.620 seconds. Encrypted 640000000 bytes.

time: 1.
FileStream, Multhhreaded ast, 16384, 4, 1.620, 640000000
Real Time: @0:00:01:665

User Time: 00:00: BB 904

Sys Time: ©0:00:02:433

\Users\fhart\ccx\bxn\x64\Release>t1mep cci -5 big5. txt big@.txt MemoryMapped MultiThreadedFast 1§
Ehcode File bigS.txt with a shift of -5 to file bigd.t
The file access technique is: MemoryMapped The thread1n9 technique is: MultiThreadedFast.
bufferSize: 16384, numberStripes:
Elapsed time: 1,291 seconds. Encrypted 640000000 bytes.
16384, 4, 1.291, 640000200

Figure 6. Running the .NET Test Program with Prototype Code Optimization
Acknowledgements

I'm very grateful to Michael Bruestle, Melvin Smith, and Alex Stoev for helpful and insightful comments and suggestions which I've incorporated into the paper.
References

1. Asanovic, K. et al., A View of the Parallel Computing Landscape. Commun. ACM 52, 10 (Oct. 2009), 56-67.

2. Bruestle, M., Private Communication, 2010. The results are identified and included with the .NET source code and Visual Studio projects download.

3. Butenhof, D. R., Programming with POSIX Threads, Addison-Wesley, 1997.

4. Cormen, T. H. Leiseson, C. E., Rivest, R. L., Stein, C., Introduction to Algorithms - Third Edition, The MIT Press, 2009.

5. Duffy, J., Concurrent Programming in Windows, Addison-Wesley, 2008.

6. Gannon, G. and Reed, D., Parallelism and the Cloud, Dr. Dobb's, October 16, 2009.

7. Hart, J. M., [WSP4] Windows System Programming - Fourth Edition, Addison-Wesley, 2010. Download native Example code.
8. Toub, S., Patterns of Parallel Programming - Understanding and Applying Parallel Patterns with the .NET Framework 4 and Visual C#, February 16, 2010.
9. Wilson, G. V., Deja Parallel All Over Again. Dr. Dobb's, June 19, 2005.
Johnson (John) M. Hart is a consultant specializing in Microsoft Windows and .NET application development, open systems computing, and technical training and writing. He has many years of experience as a software architect, manager, and engineering director at Cilk Arts, Inc. (now part of Intel), Sierra Atlantic, HP, and Apollo Computer. He served as computer science professor for nine years and has authored all four editions of Windows System Programming.
(c) Copyright 2010, JMH Associates, Inc., all rights reserved

jmh_assoc@hotmail.com, jmhart62@gmail.com

www.jmhartsoftware.com

1

